Heavy Metals Contents and Histopathological Analysis of Some Organs of Fish from Payau River, Kutai Kartanegara, Indonesia

SULISTYAWATI1, IWAN SUYATNA2, AHMAD RAFI’I3, AND GHITARINA4*

1) Laboratory of Aquatic Toxicology, Faculty of Fisheries and Marine Science, Mulawarman University, Indonesia
2) Laboratory of Kartohydro-Oceanografi, Faculty of Fisheries and Marine Science, Mulawarman University, Indonesia
3) Department of Water Resources Management, Faculty of Fisheries and Marine Science Mulawarman University, Indonesia
4) Laboratory of Water Quality, Faculty of Fisheries and Marine Science. Mulawarman University, Indonesia

ABSTRACT

The objectives of this study were to determine the heavy metals contents (Cd, Pb, Cu, and Zn) in some freshwater fish and to examine the histopathological changes of the fish organs. The fishes were obtained from Payau River in Anggana, Kutai Kartanegara District, East Kalimantan, Indonesia. There were four species examined namely: Glass Fish (Chanda sp), Croaker (Micropogonias undulatus), Lais (Kryptopterus cryptopterus), and spotted catfish (Arius maculatus). Lead (Pb), Cadmium (Cd), Copper (Cu), and Zinc (Zn) were analyzed in the gills, livers, and the muscles of the fish. The results showed that Pb and Cd were still low and fulfilled the quality standards by Indonesian National Standards Agency and Directorate of Drug and Food Control No. 03725/B/SK/VII/89. Cadmium concentration in the fish organ was <0.003 mg kg⁻¹ (maximum limit is 0.1 mg kg⁻¹) and Pb concentration was <0.002 mg kg⁻¹ (quality standard is 0.3 mg kg⁻¹). Yet, Cu and Zn concentrations were exceeded the quality standard as the levels were 2.63-2.93 mg kg⁻¹ and 60.23-65.55 mg kg⁻¹, respectively. Based on histopathological analysis of the gills, livers, and muscles, the fish experienced edema, hyperplasia, vacuolar degenerative, necrosis, and hemorrhagic.

Keywords: freshwater fish, heavy metals, histopathology, Payau River

INTRODUCTION

Payau River is part of Mahakam Delta waters that is in Anggana, Kutai Kartanegara District, East Kalimantan. This region had been recognized as important potential freshwater fish and supply for the market in Samarinda and around. In addition, Payau River is also used for transportation including coal transportation using pontoon in which could damage the aquatic environment and decrease the productivity of the waters.

Fish is commonly used as biomarker for aquatic pollution by evaluating the physiological aspect (Kock et al., 1996) or other aspects (Authman, 2015). Since fish live in water, some of histological structure are quite different compared to land animal. As stated by Takashima and Hibiya (1995), the tissues of fish are sometime different from those other animals and humans.

In aquatic environment, a chemical contaminant enters the body of the organisms by direct or indirect absorption through the membrane layer of the tissue. The contaminant enters the autotroph organism tissues by direct absorption in which the contaminant crosses the biology barrier that separate internal medium organism from external environmental by epithelium of gills (Boudou et al., 1983).
Heavy metals, for example, may enter and accumulate in the fish organ through the gills, the skin, or through their food chain (Authman, 2015). Based on study conducted by Suyatna et al., (2014), Pb, Cd, Cu, and Zn were detected in the body of fish obtained from Payau River and Muara Pantuan, in various concentrations and mostly exceeded the standard regulated by the government.

The existence of this condition was the base of this research by focusing on the Anggana (Payau River) to replicate monitoring the content of heavy metal in the body of fish, and so, to analysis tissues damage from an important organ of the fishes was caught on the same located. Gill chosen because the gill of fish is the first target from pollutant in the water, liver is an important organ to metabolism and excretion of xenobiotic compound with several morphological changes based on toxic conditions in the environment (Rocha & Monteiro, 1999), and muscles is an important part of human consumption, consequently the toxic substances will accumulate in the tissues of the human body.

This research was aimed to analyze the content of Cd, Pb, Cu and Zn which accumulate in the body of fish from Payau River, and to determine the level of tissues damage (gills, livers and muscles) of the fish.

MATERIALS AND METHODS

Materials and Location

Some materials used for analysis were: Bouin fixative, 96% alcohol, aquades, Paraffin, Hematoxylin and Eosin staining agents, xylol, albumin and Canada balsam. The tools used include fishing gear in the form of fishing vessels and mini trawls, sample bottles, dissecting sets, ovens, hot plates, Olympus type CX 23 microscopes, microtomes, beaker glass, staining jar.

Sampling was conducted in Payau River located in Anggana District, Kutai Kartanegara Regency. Heavy metal analysis was carried out in the Water Quality Laboratory of the Faculty of Fisheries and Marine Sciences Unmul and Histopathological Analysis conducted at the Laboratory of Aquatic Toxicology, Faculty of Fisheries and Sciences.

Methods

Surface water and fish were sampled for heavy metals contents and histopathological analysis. As many as four species were examined, namely: Glass Fish (Chanda sp), Croaker (Micropogenias undulates), Lais (Kryptopterus cryptopterus) and spotted catfish (Arius maculatus). Prior determination of the metal’s levels, the fish were destructed based on BSNI (2009), then analyzed using Atomic Absorption Spectrophotometry (AAS). The results were compared with Quality Standard from Directorate Food and Drug Control number 03725/B/SK/VII/89, and BSNI 7387 (2009).

The tissues (Gills, livers, and muscles) of the fish were collected and prepared for serial sectioning in relation to histopathological analysis. The specimens were processed using standard histological techniques based on Sonia Mumford (2007) with dehydrated through a graded series of ethanol, cleared with xylene, embedded with melted paraffin. Section of 5-6 µm thickness were cut by rotary
microtome and stained with Hematoxylin – Eosin (H & E) from Merck. Finally, the histological structure and histopathological changes of gill, liver and muscles were investigated using a light microscope and recorded.

RESULTS AND DISCUSSION

Heavy Metals Contents

The results showed that the fish obtained from Payau River exhibited wide range of variations in metal levels. The levels of Pb and Cd were below 0.003 mg/kg and 0.002 mg/kg, respectively (Table 1). These levels were still in the range of the standard regulation. However, Cu and Zn levels have exceeded the maximum concentration allowed in quality standard. Metals concentration in the fish in this present study is higher compared to the previous study obtained by Suyatna et al., (2014). Cu accumulation in the spotted catfish from the previous study was 1.9 mg/kg and in this present study was 2.93 mg/kg.

Table 1. Metals (Pb, Cd, Cu, and Zn) concentrations in the freshwater fish obtained from Payau River

<table>
<thead>
<tr>
<th>Sample</th>
<th>Metals concentrations (mg/kg)</th>
<th>Pb</th>
<th>Pb(*)</th>
<th>Cd</th>
<th>Cd(*)</th>
<th>Cu</th>
<th>Cu(*)</th>
<th>Zn</th>
<th>Zn(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chanda sp</td>
<td></td>
<td><0.003</td>
<td><0.003</td>
<td><0.002</td>
<td>1.01</td>
<td>2.63</td>
<td>1.9</td>
<td>65.51</td>
<td>89.54</td>
</tr>
<tr>
<td>Micropogonias undulates</td>
<td></td>
<td><0.003</td>
<td><0.003</td>
<td><0.002</td>
<td>-</td>
<td>2.93</td>
<td>-</td>
<td>60.23</td>
<td>-</td>
</tr>
<tr>
<td>Kryptopterus sp</td>
<td></td>
<td><0.003</td>
<td><0.003</td>
<td><0.002</td>
<td>-</td>
<td>2.65</td>
<td>-</td>
<td>64.21</td>
<td>-</td>
</tr>
<tr>
<td>Arius maculatus</td>
<td></td>
<td><0.003</td>
<td><0.003</td>
<td><0.002</td>
<td>0.92</td>
<td>2.93</td>
<td>-</td>
<td>65.55</td>
<td>86.49</td>
</tr>
<tr>
<td>Quality Standard</td>
<td></td>
<td>0.3(*)</td>
<td>0.1 a)</td>
<td>0.02 b)</td>
<td>0.1 b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) National Standards Agency Indonesian Republic, SNI 7387. 2009.
b) Quality standard from Directorate of Drug and Food Control No.03725/B/SK/VII/89
* Results from Suyatna et al. (2014)

Zinc (Zn) is an essential metal that in small concentration is very important for metabolism of coenzyme in organism. However, increasing exposure of Zn...
concentration in the body of fish could be harmful for the fish. Metals, like Cu and Zn could be toxic if fish cannot tolerate certain level concentration and accumulating this material may harmful to human consumption.

Histopathology of the Organs

The histopathological alteration in the gills of varies fish obtained from sampling site are displayed in Figure 2. The Gills of *Chanda* sp have displayed haemorrhage and secondary lamellae disintegration (black arrow) (Figure 2a). The gills of *Pseudociennas* sp showed some hyperplasia of epithelial cells (blue arrow) (Figure 2b). Meanwhile, *Kryptopterus* *cryptopterus* and *Arius maculatus* suffered from oedema of lamellar secondary, haemorrhage and lamellar fusion (Figures 2c and 2d). Lamellar oedema is most frequent following exposure to chemical pollutants such heavy metals, pesticides and formalin over dosage.

Pathological changes in the gill of the fish could be regressive changes including epithelial oedema, necrotic pillar cells, haemorrhagic and telangiectasia and progressive changes are cell hypertrophy, fusion two secondary lamella, hyperplasia mucus cells and epithelial cells (Takashima and Hibiya, 1995).

Hyperplasia of lamellar epithelium is generally due to an increase in numbers, and migration, of the Malpighian cells of the primary lamella (Robert, 2012). Abnormal condition caused fusion of lamella, cartilaginous haemorrhagic was indicating
that gill lamella has irritation with harmful substances in the waters as environmental life of fish. Gill is important organ for respiration and gas exchange. Their vulnerability is thus considerable because their external location and necessarily intimate contact with the water means that they are liable to damage by an irritant material, whether dissolved or suspended, in the water.

A study on the effect of heavy metals to the gills showed varies symptoms, among others hyperplasia, lamella lifting, fusion or oedema (Mohammed, et al., 2016). This was also seen in the study conducted by Fernandez et al. (2007), which showed the gills of Nile tilapia had experienced epithelium lamella lifting, epithelium proliferation, filament oedema and fusion of lamella. High level of Cu in the fish in the present study is expected to cause alterations in the organ’s tissues, although the damage of tissues is different depend on sensitivity of species to the toxic substance. The gill is the first organ to accumulate heavy metals at a level higher than the concentration deemed toxic through absorption along the gill surface and gut wall (Annabi et al., 2013).

All of the livers in the fish samples showed cloudy swelling (black arrow). There were congestion and degenerative in the liver of Chanda sp, and some debris were spotted in the hepatocyte and haemorrhagic of the tissues (Figure 3a.); Figure 3b. displays congestion and vacuolar degeneration in the liver of Pseudociennas sp. Figure 3c shows necrosis of hepatocyte in the sinusoid (brown arrow), cloudy swelling (black arrow), and congestion (blue arrow) in the liver of Kryptopterus sp. While Figure 3d. displays liver inflammation and fatty degeneration of Arius sp, and some debris are also appeared.

Histopathology result of this study showed that liver of Chanda sp experienced congestion and degenerative, and some debris were identified in the hepatocyte and haemorrhagic of tissues. The liver of Pseudociennas sp. showed congestion and vacuolisation. The liver of Kryptopterus sp. experienced necrosis of hepatocyte in the sinusoid (brown arrow) and congestion (blue arrow). Meanwhile, the liver of Arius sp. showed inflammation of tissues.

Inflammation occurs as is the basic protective response to tissue damage of whatever cause and is common to all vertebrates (Robert, 2012). The most common cause of such damage are microbes and their excretory product (toxin), physical and their chemical trauma. Hepatic tissues has many important physiological function including the intermediate metabolism of protein, carbohydrate and lipid, the synthesis of plasma protein such as albumen, and the important reproductive protein oval albumen, and also the formation and secretion of bile. A wide range of causes can damage the liver, and because of the liver’s multiple metabolic function, such damage can have serious effects on the metabolism of the entire animal. Necrotic hepatocytes (focal necrosis) may be associated with a variety of toxic condition including of toxic heavy metal. Heavy metals are hepatotoxic (target organ of the liver), neurotoxic (attacks the nervous system), and also nephrotoxic (attacks the kidneys) and then accumulate in the SH group (sulfidril) and interfere with the work of enzymes (Patricia, 2000).

The form of liver alteration of Pseudociennas sp was cloudy swelling and vacuolisation hepatocyte. Due to the existence of interference from the environment causes
cells to be abnormal in size, other than that the cells become swollen. This condition causes pressure on the cell membrane, so that the cell can break out the cell nucleus and the cell will die, glycogen out of the cell and the tissue looks foggy (cloudy).

Some histological changes were observed in the liver of *Kryptopterus* sp. The changes were necrosis of hepatocyte in sinusoid, cloudy swelling, and congestion. While the liver of *Arius* sp. showed inflammation and fatty degeneration. Liver is an organ that can carry out xenobiotic detoxification that enters the surrounding cells, including the liver cells themselves to become die. (Patricia, 2000). Therefore, if the liver continues to receive pressure from harmful chemicals and exceed its physiological ability, the liver will experience thickening of liver cells (cirrhosis).

Histopathological changes are indicative of fish experiencing environmental stress in the form of pollutants, one of which is heavy metals as detected in the fish’s body and then there are a figure of muscles of the sampled of fish. Figure 4a shows fiber splitting of the metabolizing enzymes, which when working can be the surrounding cells, including the liver cells themselves to become die. (Patricia, 2000). Therefore, if the liver continues to receive pressure from harmful chemicals and exceed its physiological ability, the liver will experience thickening of liver cells (cirrhosis).

Figure 3. Histopathology results of fishes’ studied (H + E, X 1000).
muscle of *Chanda sp.*; Figure 4b displays accumulation of debris and myofibril damage of the muscle of *Pseudociennas* sp; Figure 4c shows normal sarcolemma (black arrow) and myotome fibrosis (blue arrow) of *Kryptopterus* sp; and Figure 4d shows myotome haemorrhagic in the muscle of *Arius* sp. All muscles experienced damage, yet not all the conditions are extreme. However, this phenomenon could be an indication of the presence of pollutants that have been accumulated in aquatic biota.

The black arrow indicates the accumulation of chemicals and meat fibers degenerating. The condition of fish is not healthy and is not safe for consumption, considering the high content of Cu and Zn in the body of the fish. This is as state by Heidel & Smith (2007) that many fish look healthy but are sick fish. Fish remain alive and active, but store or accumulate pathogens or other harmful agents in their tissues.

CONCLUSIONS

The levels of Pb and Cd in the fish were still fulfil the food safety Quality Standards, yet Cu and Zn have exceeded the permitted Quality
Standards for food safety. The tissues and cells of the gills, liver and muscles (meat) have exhibited some changes including hyperplasia, necrosis, congestion, cloudy swelling, fatty degeneration and inflammation, indicating the fish suffered from environmental disturbances.

ACKNOWLEDGMENTS

Authors acknowledge financial support from Faculty of Fisheries and Marine Science, Laboratory of Water Quality, Laboratory of Aquatic Toxicology for allowing us to used laboratory facilities.

REFERENCES

Rajkowska, M and Protasowicki,M. 2013. Distribution of metals (Fe, Mn, Zn, Cu) in fish tissues in two lakes of different trophic
in Northwestern Poland. Environmental monitoring and assessment, 185 (4), 3493 – 3502.

